References

    Aaen-Stockdale, C., Ledgeway, T., and Hess, R. F. (2007). Second-order optic flow processing. Vision Res, 47(13):1798–808, doi:10.1016/j.visres.2007.02.022.

    Aaen-Stockdale, C., Ledgeway, T., McGraw, P., and Hess, R. F. (2012). Interaction of first- and second-order signals in the extraction of global-motion and optic-flow. Vision Res, 68:28–39, doi:10.1016/j.visres.2012.07.004.

    Adelson, E. H. and Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. J Opt Soc Am A, 2(2):284–299, PMID 3973762.

    Adelson, E. H. and Movshon, J. A. (1982). Phenomenal coherence of moving visual patterns. Nature, 300(5892):523–525, PMID 7144903.

    Adler, D. and Murdoch, D. (2013). rgl: 3D visualization device system (OpenGL). http://CRAN.R-project.org/package=rgl, R package version 0.93.935.

    Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans Automatic Control, 19(6):716–723.

    Allard, R. and Faubert, J. (2013). No dedicated second-order motion system. J Vis, 13(11), doi:10.1167/13.11.2.

    Allen, H. A., Ledgeway, T., and Hess, R. F. (2004). Poor encoding of position by contrast-defined motion. Vision Res, 44(17):1985–99, doi:10.1016/j.visres.2004.03.025.

    Alvarez, G. A. and Cavanagh, P. (2005). Independent resources for attentional tracking in the left and right visual hemifields. Psychol Sci, 16(8):637–43, doi:10.1111/j.1467-9280.2005.01587.x.

    Anderson, S. J. and Burr, D. C. (1987). Receptive field size of human motion detection units. Vision Res, 27(4):621–35, PMID 3660623.

    Anderson, S. J. and Burr, D. C. (1989). Receptive field properties of human motion detector units inferred from spatial frequency masking. Vision Res, 29(10):1343–58, PMID 2635464.

    Anderson, S. J., Burr, D. C., and Morrone, M. C. (1991). Two-dimensional spatial and spatial-frequency selectivity of motion-sensitive mechanisms in human vision. J Opt Soc Am A, 8(8):1340–51, PMID 1919837.

    Anstis, S. and Kim, J. (2011). Local versus global perception of ambiguous motion displays. J Vis, 11(3):13, doi:10.1167/11.3.13.

    Anstis, S. M. (1970). Phi movement as a subtraction process. Vision Res, 10(12):1411–30, PMID 5516541.

    Anstis, S. M. and Cavanagh, P. (1981). What goes up need not come down: Moving flickering edges give positive motion aftereffects. In Long, J. B. and Baddeley, A. D., editors, Attention and performance IX, chapter 4, pages 63–78. L. Erlbaum Associates.

    Anstis, S. M. and Rogers, B. J. (1975). Illusory reversal of visual depth and movement during changes of contrast. Vision Res, 15:957–61, PMID 1166630.

    Archer, K. J., Lemeshow, S., and Hosmer, D. W. (2007). Goodness-of-fit tests for logistic regression models when data are collected using a complex sampling design. Computational Statistics & Data Analysis, 51(9):4450–4464.

    Balas, B., Nakano, L., and Rosenholtz, R. (2009). A summary-statistic representation in peripheral vision explains visual crowding. J Vis, 9(12):13.1–18, doi:10.1167/9.12.13.

    Banks, M. S., Sekuler, A. B., and Anderson, S. J. (1991). Peripheral spatial vision: limits imposed by optics, photoreceptors, and receptor pooling. J Opt Soc Am A, 8(11):1775–87, PMID 1744774.

    Banton, T. and Levi, D. M. (1993). Spatial localization of motion-defined and luminance-defined contours. Vision Res, 33(16):2225–37, PMID 8273289.

    Bex, P. J. and Dakin, S. C. (2002). Comparison of the spatial-frequency selectivity of local and global motion detectors. J Opt Soc Am A Opt Image Sci Vis, 19(4):670–7, PMID 11934159.

    Bex, P. J. and Dakin, S. C. (2005). Spatial interference among moving targets. Vision Res, 45(11):1385–1398, doi:10.1016/j.visres.2004.12.001.

    Boi, M., Öğmen, H., Krummenacher, J., Otto, T. U., and Herzog, M. H. (2009). A (fascinating) litmus test for human retino- vs. non-retinotopic processing. J. Vis., 9(13):1–11. http://journalofvision.org/9/13/5/.

    Boulton, J. C. and Baker, C. L. J. (1993). Different parameters control motion perception above and below a critical density. Vision Res, 33(13):1803–11, PMID 8266636.

    Braddick, O. (1974). A short-range process in apparent motion. Vision Res, 14(7):519–27, PMID 4423193.

    Braddick, O. (1997). Local and global representations of velocity: transparency, opponency, and global direction perception. Perception, 26(8):995–1010, PMID 9509159.

    Brainard, D. (1997). The psychophysics toolbox. Spatial Vision, 10(4):433–436.

    Burr, D. C., Baldassi, S., Morrone, M. C., and Verghese, P. (2009). Pooling and segmenting motion signals. Vision Res, 49(10):1065–72, doi:10.1016/j.visres.2008.10.024.

    Burr, D. C., Morrone, M. C., and Vaina, L. M. (1998). Large receptive fields for optic flow detection in humans. Vision Res, 38(12):1731–43, PMID 9797952.

    Butzer, F., Ilg, U. J., and Zanker, J. M. (1997). Smooth-pursuit eye movements elicited by first-order and second-order motion. Exp Brain Res, 115(1):61–70, PMID 9224834.

    Cassanello, C. R., Edwards, M., Badcock, D. R., and Nishida, S. (2011). No interaction of first- and second-order signals in the extraction of global-motion and optic-flow. Vision Res, 51(3):352–61, doi:10.1016/j.visres.2010.11.012.

    Cavanagh, P. (1991). Short-range vs long-range motion: not a valid distinction. Spat Vis, 5(4):303–9, PMID 1751430.

    Cavanagh, P. and Alvarez, G. A. (2005). Tracking multiple targets with multifocal attention. Trends Cogn Sci, 9(7):349–54, doi:10.1016/j.tics.2005.05.009.

    Chen, X., Han, F., Poo, M.-M., and Dan, Y. (2007). Excitatory and suppressive receptive field subunits in awake monkey primary visual cortex (v1). Proc Natl Acad Sci U S A, 104(48):19120–5, doi:10.1073/pnas.0706938104.

    Chubb, C. and Sperling, G. (1988). Drift-balanced random stimuli: a general basis for studying non-fourier motion perception. J Opt Soc Am A, 5(11):1986–2007, PMID 3210090.

    Chubb, C. and Sperling, G. (1989). Two motion perception mechanisms revealed through distance-driven reversal of apparent motion. Proc Natl Acad Sci U S A, 86(8):2985–2989, PMID 16594030.

    Collett, D. (2003). Modelling binary data. Texts in statistical science. Chapman & Hall/CRC, Boca Raton, 2nd ed edition. http://www.loc.gov/catdir/enhancements/fy0646/2002073648-d.html.

    Cornelissen, F. W., Peters, E. M., and Palmer, J. (2002). The eyelink toolbox: eye tracking with matlab and the psychophysics toolbox. Behav Res Methods Instrum Comput, 34(4):613–617, PMID 12564564.

    Cropper, S. J. (2001). Local and global motion signals and their interaction in space and time. In Zanker, J. M. and Zeil, J., editors, Motion Vision - Computational, Neural, and Ecological Constraints. Springer Verlag, Berlin Heidelberg New York.

    Dakin, S. C., Cass, J., Greenwood, J. A., and Bex, P. J. (2010). Probabilistic, positional averaging predicts object-level crowding effects with letter-like stimuli. J Vis, 10(10):14, doi:10.1167/10.10.14.

    De Valois, R. L. and De Valois, K. K. (1991). Vernier acuity with stationary moving gabors. Vision Res, 31(9):1619–1626, PMID 1949630.

    Derrington, A. M. and Badcock, D. R. (1985). Separate detectors for simple and complex grating patterns? Vision Res, 25(12):1869–78, PMID 3832611.

    Derrington, A. M. and Henning, G. B. (1987). Errors in direction-of-motion discrimination with complex stimuli. Vision Res, 27(1):61–75, PMID 3617547.

    Downing, C. J. and Movshon, J. A. (1989). Spatial and temporal summation in the detection of motion in stochastic random dot displays. Invest-. Ophthalmol Vis Sci [Suppl], 30:72.

    Duncker, K. (1938). Induced motion. In Ellis, W. D., editor, A Source Book of Gestalt Psychology, volume 2, chapter 11, pages 161–172. Taylor and Francis.

    Edwards, M. and Badcock, D. R. (1995). Global motion perception: no interaction between the first- and second-order motion pathways. Vision Res, 35(18):2589–602, PMID 7483303.

    Felisbert, F. M., Solomon, J. A., and Morgan, M. J. (2005). The role of target salience in crowding. Perception, 34(7):823–33, PMID 16124268.

    Fischer, J., Spotswood, N., and Whitney, D. (2011). The emergence of perceived position in the visual system. J Cogn Neurosci, 23(1):119–36, doi:10.1162/jocn.2010.21417.

    Fraser, A. and Wilcox, K. J. (1979). Perception of illusory movement. Nature, 281(5732):565–6, PMID 573864.

    Fredericksen, R. E., Verstraten, F. A. J., and Van De Grind, W. A. (1994). Spatial summation and its interaction with the temporal integration mechanism in human motion perception. Vision Res, 34(23):3171–3188. http://www.sciencedirect.com/science/article/B6T0W-4846YPV-5K/2/71b01216886ba102ff37cc9bf4e8e10b.

    Freeman, J. and Simoncelli, E. P. (2011). Metamers of the ventral stream. Nat Neurosci, 14(9):1195–201, doi:10.1038/nn.2889.

    Graham, N. V. (2011). Beyond multiple pattern analyzers modeled as linear filters (as classical v1 simple cells): useful additions of the last 25 years. Vision Res, 51(13):1397–430, doi:10.1016/j.visres.2011.02.007.

    Greenwood, J. A., Bex, P. J., and Dakin, S. C. (2009). Positional averaging explains crowding with letter-like stimuli. Proc Natl Acad Sci U S A, 106(31):13130–5, doi:10.1073/pnas.0901352106.

    Greenwood, J. A., Bex, P. J., and Dakin, S. C. (2012). Crowding follows the binding of relative position and orientation. J Vis, 12(3), doi:10.1167/12.3.18.

    Hawken, M. J. and Gegenfurtner, K. R. (2001). Pursuit eye movements to second-order motion targets. J Opt Soc Am A Opt Image Sci Vis, 18(9):2282–2296, PMID 11551063.

    Hedges, J. H., Gartshteyn, Y., Kohn, A., Rust, N. C., Shadlen, M. N., Newsome, W. T., and Movshon, J. A. (2011). Dissociation of neuronal and psychophysical responses to local and global motion. Curr Biol, 21(23):2023–8, doi:10.1016/j.cub.2011.10.049.

    Hess, R. F., Ledgeway, T., and Dakin, S. (2000). Impoverished second-order input to global linking in human vision. Vision Res, 40(24):3309–18, PMID 11058730.

    Hosmer, D. W., Lemeshow, S., and Sturdivant, R. X. (2013). Applied logistic regression. Wiley series in probability and statistics. Hoboken, NJ: Wiley, third edition.

    Ilg, U. J. and Churan, J. (2004). Motion perception without explicit activity in areas MT and MST. J Neurophysiol, 92(3):1512–1523, doi:10.1152/jn.01174.2003.

    Ilildreth, E. C. and Ullman, S. (1982). The measurement of visual motion. Technical report, Massachusetts Institute of Technology. A.I. Memo No. 699.

    Klein, S. A. and Levi, D. M. (1985). Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation. J Opt Soc Am A, 2(7):1170–1190, PMID 4020514.

    Ledgeway, T. and Hess, R. F. (2002). Rules for combining the outputs of local motion detectors to define simple contours. Vision Res, 42(5):653–9, PMID 11853781.

    Levi, D. M. (2008). Crowding–an essential bottleneck for object recognition: a mini-review. Vision Res, 48(5):635–654, doi:10.1016/j.visres.2007.12.009.

    Levi, D. M., Klein, S. A., and Hariharan, S. (2002). Suppressive and facilitatory spatial interactions in foveal vision: foveal crowding is simple contrast masking. J Vis, 2(2):140–166, doi:10:1167/2.2.2.

    Lindner, A. and Ilg, U. J. (2000). Initiation of smooth-pursuit eye movements to first-order and second-order motion stimuli. Exp Brain Res, 133(4):450–6, PMID 10985680.

    Lisberger, S. G. (1998). Postsaccadic enhancement of initiation of smooth pursuit eye movements in monkeys. J Neurophysiol, 79(4):1918–1930, PMID 9535958.

    Lisberger, S. G., Morris, E. J., and Tychsen, L. (1987). Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Annual Reviews in Neuroscience, 10:97–129, doi:10.1146/annurev.ne.10.030187.000525.

    Liu, T., Jiang, Y., Sun, X., and He, S. (2009). Reduction of the crowding effect in spatially adjacent but cortically remote visual stimuli. Curr Biol, 19(2):127–32, doi:10.1016/j.cub.2008.11.065.

    Livingstone, M. S., Pack, C. C., and Born, R. T. (2001). Two-dimensional substructure of mt receptive fields. Neuron, 30(3):781–93, PMID 11430811.

    Lu, Z. L. and Sperling, G. (1995). The functional architecture of human visual motion perception. Vision Res, 35(19):2697–2722, PMID 7483311.

    Lu, Z. L. and Sperling, G. (2001). Three-systems theory of human visual motion perception: review and update. J Opt Soc Am A Opt Image Sci Vis, 18(9):2331–2370, PMID 11551067.

    Majaj, N. J., Carandini, M., and Movshon, J. A. (2007). Motion integration by neurons in macaque MT is local, not global. J Neurosci, 27(2):366–70, doi:10.1523/JNEUROSCI.3183-06.2007.

    Maruya, K., Holcombe, A. O., and Nishida, S. (2013). Rapid encoding of relationships between spatially remote motion signals. J Vis, 13(2):4, doi:10.1167/13.2.4.

    Mather, G., Cavanagh, P., and Anstis, S. M. (1985). A moving display which opposes short-range and long-range signals. Perception, 14(2):163–166, PMID 4069946.

    Mather, G. and Pavan, A. (2009). Motion-induced position shifts occur after motion integration. Vision Res, 49(23):2741–6, doi:10.1016/j.visres.2009.07.016.

    McGraw, P. V., Walsh, V., and Barrett, B. T. (2004). Motion-sensitive neurones in V5/MT modulate perceived spatial position. Curr Biol, 14(12):1090–3, doi:10.1016/j.cub.2004.06.028.

    Meilstrup, P. B. and Shadlen, M. N. (2008). Integration of local and global visual motion revealed by localization judgments. Program No. 460.11/GG3. In 2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience. Online.

    Meilstrup, P. B. and Shadlen, M. N. (2010). The steerable spiral. In Best Illusion of the Year Contest. Neural Correlate Society. http://illusionoftheyear.com/2010/the-steerable-spiral/.

    Mikami, A., Newsome, W. T., and Wurtz, R. H. (1986). Motion selectivity in macaque visual cortex. ii. spatiotemporal range of directional interactions in mt and v1. J Neurophysiol, 55(6):1328–39, PMID 3734858.

    Morrone, M. C., Burr, D. C., and Vaina, L. M. (1995). Two stages of visual processing for radial and circular motion. Nature, 376(6540):507–9, doi:10.1038/376507a0.

    Motter, B. C. (2002). Crowding and object integration within the receptive field of v4 neurons. Journal of Vision, 2(7):274, doi:10.1167/2.7.274.

    Motter, B. C. (2006). Modulation of transient and sustained response components of v4 neurons by temporal crowding in flashed stimulus sequences. J Neurosci, 26(38):9683–94, doi:10.1523/JNEUROSCI.5495-05.2006.

    Movshon, J. A., Adelson, E. H., Gizzi, M. S., and Newsome, W. T. (1985). The analysis of moving visual patterns. In Chagas, C., Gattass, R., and Gross, C., editors, Pattern Recognition Mechanisms. Rome: Vatican Press.

    Movshon, J. A. and Newsome, W. T. (1996). Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci, 16(23):7733–41, PMID 8922429.

    Movshon, J. A., Thompson, I. D., and Tolhurst, D. J. (1978). Receptive field organization of complex cells in the cat’s striate cortex. J Physiol, 283:79–99, PMID 722592.

    Murakami, I. and Shimojo, S. (1993). Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes. Vision Res, 33(15):2091–107, PMID 8266651.

    Murakami, I. and Shimojo, S. (1996). Assimilation-type and contrast-type bias of motion induced by the surround in a random-dot display: evidence for center-surround antagonism. Vision Res, 36(22):3629–39, PMID 8976993.

    Newsome, W. T., Britten, K. H., and Movshon, J. A. (1989). Neuronal correlates of a perceptual decision. Nature, 341(6237):52–4, doi:10.1038/341052a0.

    Nishida, S. (2011). Advancement of motion psychophysics: review 2001-2010. J Vis, 11(5):11, doi:10.1167/11.5.11.

    Nishida, S. and Johnston, A. (1999). Influence of motion signals on the perceived position of spatial pattern. Nature, 397(6720):610–2, doi:10.1038/17600.

    Nishida, S., Ledgeway, T., and Edwards, M. (1997). Dual multiple-scale processing for motion in the human visual system. Vision Res, 37(19):2685–98, PMID 9373668.

    Nishida, S. and Sato, T. (1992). Positive motion after-effect induced by bandpass-filtered random-dot kinematograms. Vision Res, 32(9):1635–46, PMID 1455735.

    Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., and Morgan, M. (2001). Compulsory averaging of crowded orientation signals in human vision. Nat Neurosci, 4(7):739–44, doi:10.1038/89532.

    Pelli, D. and Tillman, K. (2008). The uncrowded window of object recognition. Nat Neurosci, pages 1129–1135, doi:10.1038/nn.2187.

    Pelli, D. G. (2008). Crowding: a cortical constraint on object recognition. Curr Opin Neurobiol, 18(4):445–451, doi:10.1016/j.conb.2008.09.008.

    Pelli, D. G., Palomares, M., and Majaj, N. J. (2004). Crowding is unlike ordinary masking: distinguishing feature integration from detection. J Vis, 4(12):1136–69, doi:10:1167/4.12.12.

    Petrov, Y. and Meleshkevich, O. (2011). Asymmetries and idiosyncratic hot spots in crowding. Vision Res, 51(10):1117–23, doi:10.1016/j.visres.2011.03.001.

    Price, N. S. C., Greenwood, J. A., and Ibbotson, M. R. (2004). Tuning properties of radial phantom motion aftereffects. Vision Res, 44(17):1971–9, doi:10.1016/j.visres.2004.04.001.

    Pylyshyn, Z. W. and Storm, R. W. (1988). Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spat Vis, 3(3):179–97, PMID 3153671.

    R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

    Ramachandran, V. S. and Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19(5):611–6, PMID 2102995.

    Reinhardt-Rutland, A. H. (1988). Induced movement in the visual modality: an overview. Psychol Bull, 103(1):57–71, PMID 3279445.

    Rust, N. C., Mante, V., Simoncelli, E. P., and Movshon, J. A. (2006). How MT cells analyze the motion of visual patterns. Nature Neuroscience, 9(11):1421–1431, doi:10.1038/nn1786.

    Rust, N. C., Schwartz, O., Movshon, J. A., and Simoncelli, E. P. (2005). Spatiotemporal elements of macaque V1 receptive fields. Neuron, 46(6):945–956, doi:10.1016/j.neuron.2005.05.021.

    Serrano-Pedraza, I. and Derrington, A. M. (2010). Antagonism between fine and coarse motion sensors depends on stimulus size and contrast. J Vis, 10(8):18, doi:10.1167/10.8.18.

    Serrano-Pedraza, I., Goddard, P., and Derrington, A. M. (2007). Evidence for reciprocal antagonism between motion sensors tuned to coarse and fine features. J Vis, 7(12):8.1–14, doi:10.1167/7.12.8.

    Shapiro, A., Lu, Z.-L., Huang, C.-B., Knight, E., and Ennis, R. (2010). Transitions between central and peripheral vision create spatial/temporal distortions: a hypothesis concerning the perceived break of the curveball. PLoS One, 5(10):e13296, doi:10.1371/journal.pone.0013296.

    Shapiro, A., Lu, Z.-L., Knight, E., and Ennis, R. (2009). The break of the curveball. In Best Illusion of the Year Contest. Neural Correlate Society. http://illusionoftheyear.com/2009/the-break-of-the-curveball/.

    Shapiro, A. G. (2008). Feature blur in peripheral vision. Program No. 811.3. In 2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience. Online.

    Shapiro, A. G., Knight, E. J., and Lu, Z.-L. (2011). A first- and second-order motion energy analysis of peripheral motion illusions leads to further evidence of “feature blur” in peripheral vision. PLoS One, 6(4):e18719, doi:10.1371/journal.pone.0018719.

    Simoncelli, E. P. and Heeger, D. J. (1998). A model of neuronal responses in visual area MT. Vision Res, 38(5):743–761, PMID 9604103.

    Snowden, R. J. and Milne, A. B. (1997). Phantom motion after effects–evidence of detectors for the analysis of optic flow. Curr Biol, 7(10):717–22, PMID 9368753.

    Stan Development Team (2014). Stan: A c++ library for probability and sampling, version 2.2. http://mc-stan.org/.

    Steinman, R. M., Pizlo, Z., and Pizlo, F. J. (2000). Phi is not beta, and why Wertheimer’s discovery launched the gestalt revolution. Vision Res, 40(17):2257–2264. http://www.sciencedirect.com/science/article/B6T0W-40VT194-4/2/ccd5af03d347e42d9fb50131930ed666.

    Sundberg, K. A., Fallah, M., and Reynolds, J. H. (2006). A motion-dependent distortion of retinotopy in area v4. Neuron, 49(3):447–457, doi:10.1016/j.neuron.2005.12.023.

    Toet, A. and Levi, D. M. (1992). The two-dimensional shape of spatial interaction zones in the parafovea. Vision Res, 32(7):1349–1357, PMID 1455707.

    Touryan, J., Felsen, G., and Dan, Y. (2005). Spatial structure of complex cell receptive fields measured with natural images. Neuron, 45(5):781–91, doi:10.1016/j.neuron.2005.01.029.

    Tse, P. (2006). The infinite regress illusion. In Best Illusion of the Year Contest. Neural Correlate Society. http://illusionoftheyear.com/2006/infinite-regress-illusion/.

    Tse, P. U. and Hsieh, P. J. (2006). The infinite regress illusion reveals faulty integration of local and global motion signals. Vision Res, 46(22):3881–3885. http://www.sciencedirect.com/science/article/B6T0W-4KJ5T3X-5/2/ef7fd1d77d18c40c9074c101edd1a11a.

    Tsiatis, A. A. (1980). A note on a goodness-of-fit test for the logistic regression model. Biometrika, 67(1):250–251.

    Turner, H. and Firth, D. (2012). Generalized nonlinear models in R: An overview of the gnm package. http://CRAN.R-project.org/package=gnm, R package version 1.0-6.

    Vaina, L. M. and Cowey, A. (1996). Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage. Proc Biol Sci, 263(1374):1225–1232, doi:10.1098/rspb.1996.0180.

    Vaina, L. M. and Soloviev, S. (2004). First-order and second-order motion: neurological evidence for neuroanatomically distinct systems. Prog Brain Res, 144:197–212, PMID 14650850.

    Verghese, P. and McKee, S. P. (2002). Predicting future motion. J. Vis., 2(5):413–423. http://journalofvision.org/2/5/5/.

    Verghese, P., McKee, S. P., and Grzywacz, N. M. (2000). Stimulus configuration determines the detectability of motion signals in noise. J Opt Soc Am A Opt Image Sci Vis, 17(9):1525–34, PMID 10975362.

    Verghese, P. and Stone, L. S. (1997). Spatial layout affects speed discrimination. Vision Res, 37(4):397–406, PMID 9156171.

    Verghese, P., Watamaniuk, S. N., McKee, S. P., and Grzywacz, N. M. (1999). Local motion detectors cannot account for the detectability of an extended trajectory in noise. Vision Res, 39(1):19–30, PMID 10211392.

    Volz, H. and Zanker, J. M. (1996). Hyperacuity for spatial localization of contrast-modulated patterns. Vision Res, 36(9):1329–39, PMID 8711911.

    Watamaniuk, S. N., McKee, S. P., and Grzywacz, N. M. (1995). Detecting a trajectory embedded in random-direction motion noise. Vision Res, 35(1):65–77, PMID 7839611.

    Watson, A. B. and Ahumada, A. J. (1985). Model of human visual-motion sensing. Optical Society of America, Journal, A: Optics and Image Science, 2:322–342.

    Watson, A. B. and Turano, K. (1995). The optimal motion stimulus. Vision Res, 35(3):325–336, PMID 7892728.

    Watt, R., Ledgeway, T., and Dakin, S. C. (2008). Families of models for gabor paths demonstrate the importance of spatial adjacency. J Vis, 8(7):23.1–19, doi:10.1167/8.7.23.

    Wertheimer, M. (1912). Experimentelle studien über das sehen von bewegung. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 61:161 – 265.

    Wertheimer, M., Spillmann, L., Sarris, V., and Sekuler, R. (2012). On perceived motion and figural organization. MIT Press, Cambridge, Mass.

    Whitney, D. and Levi, D. M. (2011). Visual crowding: a fundamental limit on conscious perception and object recognition. Trends Cogn Sci, 15(4):160–8, doi:10.1016/j.tics.2011.02.005.

    Wichmann, F. A. and Hill, N. J. (2001). The psychometric function: I. fitting, sampling, and goodness of fit. Percept Psychophys, 63(8):1293–313, PMID 11800458.

    Wickham, H. (2009). Ggplot2: elegant graphics for data analysis. Use R! Springer, New York, 1st edition. http://had.co.nz/ggplot2/book.

    Williams, D. W. and Sekuler, R. (1984). Coherent global motion percepts from stochastic local motions. Vision Res, 24(1):55–62, PMID 6695508.

    Wilmer, J. B. and Nakayama, K. (2007). Two distinct visual motion mechanisms for smooth pursuit: evidence from individual differences. Neuron, 54(6):987–1000, doi:10.1016/j.neuron.2007.06.007.

    Zanker, J. M. (1990). Theta motion: a new psychophysical paradigm indicating two levels of visual motion perception. Naturwissenschaften, 77(5):243–6, PMID 2377238.

    Zanker, J. M. (1993). Theta motion: a paradoxical stimulus to explore higher order motion extraction. Vision Res, 33(4):553–69, PMID 8503201.

    Zanker, J. M. (1997). Second-order motion perception in the peripheral visual field. J Opt Soc Am A Opt Image Sci Vis, 14(7):1385–92, PMID 9203393.

    Zhuo, Y., Zhou, T. G., Rao, H. Y., Wang, J. J., Meng, M., Chen, M., Zhou, C., and Chen, L. (2003). Contributions of the visual ventral pathway to long-range apparent motion. Science, 299(5605):417–20, doi:10.1126/science.1077091.

    Zigler, M. J., Cook, B., Miller, D., and Wemple, L. (1930). The perception of form in peripheral vision. The American Journal of Psychology, 42(2):pp. 246–259. http://www.jstor.org/stable/1415274.

    Zivotofsky, A. Z. (2004). The Duncker illusion: intersubject variability, brief exposure, and the role of eye movements in its generation. Invest Ophthalmol Vis Sci, 45(8):2867–72, doi:10.1167/iovs.04-0031.